Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrasound Med Biol ; 50(4): 610-616, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38290910

RESUMO

OBJECTIVE: Neonatal hypoxic-ischemic brain damage (HIBD) can have long-term implications on patients' physical and mental health, yet the available treatment options are limited. Recent research has shown that low-intensity pulsed ultrasound (LIPUS) holds promise for treating neurodegenerative diseases and traumatic brain injuries. Our objective was to explore the therapeutic potential of LIPUS for HIBD. METHODS: Due to the lack of a suitable animal model for neonatal HIBD, we will initially simulate the therapeutic effects of LIPUS on neuronal cells under oxidative stress and neuroinflammation using cell experiments. Previous studies have investigated the biologic responses following intracranial injection of 6-hydroxydopamine (6-OHDA). In this experiment, we will focus on the biologic effects produced by LIPUS treatment on neuronal cells (specifically, SH-SY5Y cells) without the presence of other neuroglial cell assistance after stimulation with 6-OHDA. RESULTS: We found that (i) pulsed ultrasound exposure, specifically three-intermittent sonication at intensities ranging from 0.1 to 0.5 W/cm², did not lead to a significant decrease in viability among SH-SY5Y cells; (ii) LIPUS treatment exhibited a positive effect on cell viability, accompanied by an increase in glial cell-derived neurotrophic factor (GDNF) levels and a decrease in caspase three levels; (iii) the administration of 6-OHDA had a significant impact on cell viability, resulting in a decrease in both brain cell-derived neurotrophic factor (BDNF) and GDNF levels, while concurrently elevating caspase three and matrix metalloproteinase-9 (MMP-9) levels; and (iv) LIPUS treatment demonstrated its potential to alleviate the changes induced by 6-OHDA, particularly in the levels of BDNF, GDNF, and tyrosine hydroxylase (TH). CONCLUSION: LIPUS treatment may possess partial therapeutic capabilities for SH-SY5Y cells damaged by 6-OHDA neurotoxicity. Our findings enhance our understanding of the effects of LIPUS treatment on cell viability and its modulation of key factors involved in the pathophysiology of HIBD and show the promising potential of LIPUS as an alternative therapeutic approach for neonates with HIBD.


Assuntos
Produtos Biológicos , Neuroblastoma , Animais , Recém-Nascido , Humanos , Fator Neurotrófico Derivado do Encéfalo , Oxidopamina , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Ondas Ultrassônicas , Caspases
2.
Schizophr Bull ; 50(1): 120-131, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37301986

RESUMO

BACKGROUND AND HYPOTHESIS: Treatment of schizophrenia remains a major challenge. Recent studies have focused on glutamatergic signaling hypoactivity through N-methyl-D-aspartate (NMDA) receptors. Low-intensity pulsed ultrasound (LIPUS) improves behavioral deficits and ameliorates neuropathology in dizocilpine (MK-801)-treated rats. The aim of this study was to investigate the efficacy of LIPUS against psychiatric symptoms and anxiety-like behaviors. STUDY DESIGN: Rats assigned to 4 groups were pretreated with or without LIPUS for 5 days. The open field and prepulse inhibition tests were performed after saline or MK-801 (0.3 mg/kg) administration. Then, the neuroprotective effects of LIPUS on the MK-801-treated rats were evaluated using western blotting and immunohistochemical staining. STUDY RESULTS: LIPUS stimulation of the prefrontal cortex (PFC) prevented deficits in locomotor activity and sensorimotor gating and improved anxiety-like behavior. MK-801 downregulated the expression of NR1, the NMDA receptor, in rat medial PFC (mPFC). NR1 expression was significantly higher in animals receiving LIPUS pretreatment compared to those receiving only MK-801. In contrast, a significant increase in c-Fos-positive cells in the mPFC and ventral tegmental area was observed in the MK-801-treated rats compared to those receiving only saline; this change was suppressed by pretreatment with LIPUS. CONCLUSIONS: This study provides new evidence for the role of LIPUS stimulation in regulating the NMDA receptor and modulating c-Fos activity, which makes it a potentially valuable antipsychotic treatment for schizophrenia.


Assuntos
Esquizofrenia , Animais , Ratos , Esquizofrenia/induzido quimicamente , Maleato de Dizocilpina/farmacologia , Receptores de N-Metil-D-Aspartato , Ansiedade , Córtex Pré-Frontal
3.
Artigo em Inglês | MEDLINE | ID: mdl-38082993

RESUMO

Inflammatory bowel disease (IBD) is characterized by chronic inflammation in the intestinal tract. There is currently no effective cure for IBD. The aim of this study was to evaluate the protective effect of low-intensity pulsed ultrasound (LIPUS) on lipopolysaccharide (LPS)-induced intestinal damage in a C57BL/6 mouse model. Colonic inflammation was induced by LPS injection (0.75 mg/kg, i.p.) for 7 days. A 1.0 MHz ultrasound transducer was used with a duty cycle of 5% and a repetition frequency of 1 Hz. LIPUS was applied to the abdominal region for 15 min/day from days 1 to 6 at both intensity of 0.5 W/cm2 or 1.0 W/cm2. Colonic samples were collected for macroscopic and westerm blotting analysis. First, the optimal dose of LPS for experiments was investigated. Our results demonstrated that LIPUS alleviates colonic damage by reducing colon shortening and increasing the levels of tight junction proteins such as Occludin and ZO-1. These findings show that abdominal LIPUS stimulation may be a novel therapeutic strategy for IBD through enhancement of tight junction protein levels and attenuation of colonic length.


Assuntos
Doenças Inflamatórias Intestinais , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Colo , Inflamação/metabolismo
4.
Tzu Chi Med J ; 35(4): 300-305, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035058

RESUMO

The number of patients with dementia grows rapidly as the global population ages, which posits tremendous health-care burden to the society. Only cholinesterase inhibitors and a N-methyl-D-aspartate receptor antagonist have been approved for treating patients with Alzheimer's disease (AD), and their clinical effects remained limited. Medical devices serve as an alternative therapeutic approach to modulating neural activities and enhancing cognitive function. Four major brain stimulation technologies including deep brain stimulation (DBS), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and transcranial ultrasound stimulation (TUS) have been applied to AD in a clinical trial setting. DBS allows electrical stimulation at the specified nucleus but remains resource-demanding, and after all, an invasive surgery; whereas TMS and tDCS are widely available and affordable but less ideal with respect to localization. The unique physical property of TUS, on the other hand, allows both thermal and mechanical energy to be transduced and focused for neuromodulation. In the context of dementia, using focused ultrasound to induce blood-brain barrier opening for delivering drugs and metabolizing amyloid protein has drawn great attention in recent years. Furthermore, low-intensity pulsed ultrasound has demonstrated its neuroprotective effects in both in vitro and in vivo studies, leading to ongoing clinical trials for AD. The potential and limitation of transcranial brain stimulation for treating patients with dementia would be discussed in this review.

5.
J Transl Med ; 21(1): 565, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620888

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH) is a condition associated with high morbidity and mortality, and glia-mediated inflammation is a major contributor to neurological deficits. However, there is currently no proven effective treatment for clinical ICH. Recently, low-intensity pulsed ultrasound (LIPUS), a non-invasive method, has shown potential for neuroprotection in neurodegenerative diseases. This study aimed to investigate the neuroprotective effects and potential mechanisms of LIPUS on glia-mediated inflammation in ICH. METHODS: This study used 289 mice to investigate the effects of LIPUS on ICH. ICH was induced by injecting bacterial collagenase (type VII-S; 0.0375 U) into the striatum of the mice. LIPUS was applied noninvasively for 3 days, including a 2-h-delayed intervention to mimic clinical usage. The study evaluated neurological function, histology, brain water content, hemoglobin content, MRI, and protein expression of neurotrophic factors, inflammatory molecules, and apoptosis. In vitro studies investigated glia-mediated inflammation by adding thrombin (10 U/mL) or conditioned media to primary and cell line cultures. The PI3K inhibitor LY294002 was used to confirm the effects of PI3K/Akt signaling after LIPUS treatment. RESULTS: LIPUS treatment improved neurological deficits and reduced tissue loss, edema, and neurodegeneration after ICH. The protective effects of LIPUS resulted from decreased glia-mediated inflammation by inhibiting PI3K/Akt-NF-κB signaling, which reduced cytokine expression and attenuated microglial activation-induced neuronal damage in vitro. CONCLUSIONS: LIPUS treatment improved neurological outcomes and reduced glia-mediated inflammation by inhibiting PI3K/Akt-NF-κB signaling after ICH. LIPUS may provide a non-invasive potential management strategy for ICH.


Assuntos
NF-kappa B , Fosfatidilinositol 3-Quinases , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt , Neuroglia , Hemorragia Cerebral/complicações , Hemorragia Cerebral/terapia
6.
CNS Neurosci Ther ; 29(12): 4113-4123, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37401041

RESUMO

INTRODUCTION: Activated microglia can be polarized to the pro-inflammatory M1 phenotype and the anti-inflammatory M2 phenotype. Low-intensity pulsed ultrasound (LIPUS) can attenuate pro-inflammatory responses in activated microglia. OBJECTIVE: This study aimed to investigate the effects of LIPUS on M1/M2 polarization of microglial cells and the regulatory mechanisms associated with signaling pathways. METHODS: BV-2 microglial cells were stimulated by lipopolysaccharide (LPS) to an M1 phenotype or by interleukin-4 (IL-4) to an M2 phenotype. Some microglial cells were exposed to LIPUS, while others were not. M1/M2 marker mRNA and protein expression were measured using real-time polymerase chain reaction and western blot, respectively. Immunofluorescence staining was performed to determine inducible nitric oxide synthase (iNOS)-/arginase-1 (Arg-1)- and CD68-/CD206-positive cells. RESULTS: LIPUS treatment significantly attenuated LPS-induced increases in inflammatory markers (iNOS, tumor necrosis factor-α, interleukin-1ß, and interleukin-6) as well as the expression of cell surface markers (CD86 and CD68) of M1-polarized microglia. In contrast, LIPUS treatment significantly enhanced the expression of M2-related markers (Arg-1, IL-10, and Ym1) and membrane protein (CD206). LIPUS treatment prevented M1 polarization of microglia and enhanced or sustained M2 polarization by regulating M1/M2 polarization through the signal transducer and activator of transcription 1/STAT6/peroxisome proliferator-activated receptor gamma pathways. CONCLUSIONS: Our findings suggest that LIPUS inhibits microglial polarization and switches microglia from the M1 to the M2 phenotype.


Assuntos
Microglia , PPAR gama , Humanos , Lipopolissacarídeos/farmacologia , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/farmacologia , Transdução de Sinais , Inflamação/metabolismo , Fator de Transcrição STAT6
7.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298275

RESUMO

Systemic inflammation is associated with intestinal inflammation and neuroinflammation by imbalancing the gut-brain axis. Low-intensity pulsed ultrasound (LIPUS) has neuroprotective and anti-inflammatory effects. This study explored LIPUS's neuroprotective effects against lipopolysaccharide (LPS)-induced neuroinflammation through transabdominal stimulation. Male C57BL/6J mice were intraperitoneally injected with LPS (0.75 mg/kg) daily for seven days, and abdominal LIPUS was applied to the abdominal area for 15 min/day during the last six days. One day after the last LIPUS treatment, biological samples were collected for microscopic and immunohistochemical analysis. Histological examination showed that LPS administration leads to tissue damage in the colon and brain. Transabdominal LIPUS stimulation attenuated colonic damage, reducing histological score, colonic muscle thickness, and villi shortening. Furthermore, abdominal LIPUS reduced hippocampal microglial activation (labeled by ionized calcium-binding adaptor molecule-1 [Iba-1]) and neuronal cell loss (labeled by microtubule-associated protein 2 [MAP2]). Moreover, abdominal LIPUS attenuated the number of apoptotic cells in the hippocampus and cortex. Altogether, our results indicate that abdominal LIPUS stimulation attenuates LPS-induced colonic inflammation and neuroinflammation. These findings provide new insights into the treatment strategy for neuroinflammation-related brain disorders and may facilitate method development through the gut-brain axis pathway.


Assuntos
Lipopolissacarídeos , Neuroproteção , Animais , Camundongos , Masculino , Lipopolissacarídeos/toxicidade , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Inflamação/induzido quimicamente , Inflamação/terapia , Inflamação/metabolismo
8.
Life Sci ; 325: 121769, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37178865

RESUMO

AIM: Inflammatory bowel disease (IBD) may be a risk factor in the development of brain inflammation. It has been demonstrated noninvasive neuromodulation through sub-organ ultrasound stimulation. The purpose of this study was to investigate whether abdominal low-intensity pulsed ultrasound (LIPUS) alleviates lipopolysaccharide (LPS)-induced cortical inflammation via inhibition of colonic inflammation. MATERIALS AND METHODS: Colonic and cortical inflammation was induced in mice by LPS (0.75 mg/kg, i.p. injection) for 7 days, followed by application of LIPUS (0.5 and 1.0 W/cm2) to the abdominal area for 6 days. Biological samples were collected for Western blot analysis, gelatin zymography, colon length measurement, and histological evaluation. KEY FINDINGS: LIPUS treatment significantly attenuated LPS-induced increases in IL-6, IL-1ß, COX-2, and cleaved caspase-3 expression in the colon and cortex of mice. Moreover, LIPUS significantly increased the levels of tight junction proteins in the epithelial barrier in the mouse colon and cortex with LPS-induced inflammation. Compared to the group treated only with LPS, the LIPUS-treated groups showed decreased muscle thickness and increased crypt length and colon length. Furthermore, LIPUS treatment reduced inflammation by inhibiting the LPS-induced activation of TLR4/NF-κB inflammatory signaling in the brain. SIGNIFICANCE: We found that LIPUS alleviated LPS-induced colonic and cortical inflammation through abdominal stimulation of mice. These results suggest that abdominal LIPUS stimulation may be a novel therapeutic strategy against neuroinflammation via enhancement of tight junction protein levels and inhibition of inflammatory responses in the colon.


Assuntos
NF-kappa B , Animais , Camundongos , Inflamação/induzido quimicamente , Inflamação/terapia , Lipopolissacarídeos/toxicidade , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo
9.
Nat Commun ; 14(1): 2306, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085504

RESUMO

Finding highly efficient hydrogen evolution reaction (HER) catalysts is pertinent to the ultimate goal of transformation into a net-zero carbon emission society. The design principles for such HER catalysts lie in the well-known structure-property relationship, which guides the synthesis procedure that creates catalyst with target properties such as catalytic activity. Here we report a general strategy to synthesize 10 kinds of single-atom-doped CoSe2-DETA (DETA = diethylenetriamine) nanobelts. By systematically analyzing these products, we demonstrate a volcano-shape correlation between HER activity and Co atomic configuration (ratio of Co-N bonds to Co-Se bonds). Specifically, Pb-CoSe2-DETA catalyst reaches current density of 10 mA cm-2 at 74 mV in acidic electrolyte (0.5 M H2SO4, pH ~0.35). This striking catalytic performance can be attributed to its optimized Co atomic configuration induced by single-atom doping.

10.
Cereb Cortex ; 33(4): 1403-1411, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35368059

RESUMO

It has been shown that transcranial ultrasound stimulation (TUS) is capable of attenuating myelin loss and providing neuroprotection in animal models of brain disorders. In this study, we investigated the ability of TUS to promote remyelination in the lysolecithin (LPC)-induced local demyelination in the hippocampus. Demyelination was induced by the micro-injection of 1.5 µL LPC (1%) into the rat hippocampus and the treated group received daily TUS for 5 or 12 days. Magnetic resonance imaging techniques, including magnetization transfer ratio (MTR) and T2-weighted imaging, were used to longitudinally characterize the demyelination model. Furthermore, the therapeutic effects of TUS on LPC-induced demyelination were assessed by Luxol fast blue (LFB) staining. Our data revealed that reductions in MTR values observed during demyelination recover almost completely upon remyelination. The MTR values in demyelinated lesions were significantly higher in TUS-treated rats than in the LPC-only group after undergoing TUS. Form histological observation, TUS significantly reduced the size of demyelinated lesion 7 days after LPC administration. This study demonstrated that MTR was a sensitive and reproducible quantitative marker to assess remyelination process in vivo during TUS treatment. These findings might open new promising treatment strategies for demyelinating diseases such as multiple sclerosis.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Remielinização , Ratos , Animais , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/terapia , Esclerose Múltipla/patologia , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/terapia , Lisofosfatidilcolinas/toxicidade , Modelos Animais , Bainha de Mielina , Modelos Animais de Doenças
11.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077437

RESUMO

Microglia, astrocytes, and oligodendrocyte progenitor cells (OPCs) may serve as targets for remyelination-enhancing therapy. Low-intensity pulsed ultrasound (LIPUS) has been demonstrated to ameliorate myelin loss and inhibit neuroinflammation in animal models of brain disorders; however, the underlying mechanisms through which LIPUS stimulates remyelination and glial activation are not well-understood. This study explored the impacts of LIPUS on remyelination and resident cells following lysolecithin (LPC)-induced local demyelination in the hippocampus. Demyelination was induced by the micro-injection of 1.5 µL of 1% LPC into the rat hippocampus, and the treatment groups received daily LIPUS stimulation for 5 days. The therapeutic effects of LIPUS on LPC-induced demyelination were assessed through immunohistochemistry staining. The staining was performed to evaluate remyelination and Iba-1 staining as a microglia marker. Our data revealed that LIPUS significantly increased myelin basic protein (MBP) expression. Moreover, the IHC results showed that LIPUS significantly inhibited glial cell activation, enhanced mature oligodendrocyte density, and promoted brain-derived neurotrophic factor (BDNF) expression at the lesion site. In addition, a heterologous population of microglia with various morphologies can be found in the demyelination lesion after LIPUS treatment. These data show that LIPUS stimulation may serve as a potential treatment for accelerating remyelination through the attenuation of glial activation and the enhancement of mature oligodendrocyte density and BDNF production.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Remielinização , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Ratos
12.
Neurotherapeutics ; 19(2): 649-659, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35229268

RESUMO

Cognitive dysfunctions are a core feature of schizophrenia that may be linked to abnormalities in gamma-aminobutyric-acid (GABA)ergic neurons. Traditional antipsychotics show poor efficacy in treating cognitive symptoms. The purpose of this study was to investigate the restorative role of transcranial ultrasound stimulation (TUS) in counteracting dizocilpine (MK-801)-induced cognitive deficits and GABAergic interneuron dysfunction in a simulation of schizophrenia. Some rats subjected to MK-801 administration were treated with low-intensity pulsed ultrasound (LIPUS) daily for 5 days, while other rats subjected to MK-801 administration received no LIPUS treatment. After LIPUS treatment, the neuroprotective effects of LIPUS in the LIPUS-treated rats were assessed through behavioral analysis, western blotting, and histological observations. Compared with the MK-801-treated group, the MK-801 plus LIPUS-treated rats revealed a preference for novel objects. The MK-801 plus LIPUS-treated rats also exhibited a significant decrease in swim times compared to the MK-801-treated rats. LIPUS stimulation significantly increased hippocampal levels of CB and PV and restored the cell densities of PV + and CB + in the cingulate cortex in the MK-801 plus LIPUS-treated group. In addition, LIPUS stimulation rebalanced the BDNF levels in the hippocampus and medial prefrontal cortex. Our findings indicate that LIPUS improves cognitive deficits and ameliorates neuropathology in MK-801-treated rats. These results suggest that LIPUS may constitute a potential novel therapeutic approach for the treatment of schizophrenia.


Assuntos
Maleato de Dizocilpina , Esquizofrenia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Interneurônios , Ratos , Roedores , Esquizofrenia/induzido quimicamente , Esquizofrenia/metabolismo , Esquizofrenia/terapia
13.
Ultrasound Med Biol ; 48(2): 265-274, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34740497

RESUMO

Low-intensity pulsed ultrasound (LIPUS) is a promising non-invasive neuromodulation tool for deep brain stimulation. Here, we investigated the impact of LIPUS, including neuroprotective effects, on the pathology of Parkinson's disease (PD) in an animal model. Sprague-Dawley rats were injected with 6-hydroxydopamine (6-OHDA) at two sites in the right striatum. LIPUS (1 MHz, 5% duty cycle, 1-Hz pulse repetition frequency, 15 min/d) stimulation was then applied to some of the rats (the 6-OHDA + LIPUS group) beginning 2 wk after the 6-OHDA administration, while the remaining rats (the 6-OHDA group) received no LIPUS stimulation. The 6-OHDA-induced inflammatory responses and expressions of neurotrophic factors were quantified with immunofluorescence activity. The safety of LIPUS was assessed using hematoxylin and eosin and Nissl staining. LIPUS treatment significantly inhibited 6-OHDA-induced glial activation and the phosphorylation of nuclear factor-κB p65 in the substantia nigra pars compacta. Further study revealed that LIPUS effectively preserved the levels of neurotrophic factors, dopamine transporter and tight junction proteins of the blood-brain barrier in the 6-OHDA + LIPUS group compared with the 6-OHDA group. These results indicate that LIPUS acts via multiple neuroprotective mechanisms in the PD rat model and suggest that LIPUS can be viewed as a potential treatment for PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Fármacos Neuroprotetores/uso terapêutico , Oxidopamina/uso terapêutico , Doença de Parkinson/terapia , Ratos , Ratos Sprague-Dawley , Substância Negra
14.
Front Oncol ; 11: 722652, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604058

RESUMO

The changes in body composition are early adverse effects of androgen deprivation therapy (ADT); however, their prognostic impact remains unclear in prostate cancer. This study aimed to evaluate the association between body composition changes and survival in patients with high-risk prostate cancer. We measured the skeletal muscle index (SMI) and total adipose tissue index (TATI) at the L3 vertebral level using computed tomography at baseline and within one year after initiating ADT in 125 patients with high-risk prostate cancer treated with radiotherapy and ADT between 2008 and 2018. Non-cancer mortality predictors were identified using Cox regression models. The median follow-up was 49 months. Patients experienced an average SMI loss of 5.5% over 180 days (95% confidence interval: -7.0 to -4.0; p<0.001) and TATI gain of 12.6% over 180 days (95% confidence interval: 9.0 to 16.2; p<0.001). Body mass index changes were highly and weakly correlated with changes in TATI and SMI, respectively (Spearman ρ for TATI, 0.78, p<0.001; ρ for SMI, 0.27, p=0.003). As a continuous variable, each 1% decrease in SMI was independently associated with a 9% increase in the risk of non-cancer mortality (hazard ratio: 1.09; p=0.007). Moreover, the risk of non-cancer mortality increased 5.6-fold in patients with SMI loss ≥5% compared to those with unchanged SMI (hazard ratio: 5.60; p=0.03). Body mass index and TATI were not associated with non-cancer mortality. Muscle loss during ADT is occult, independent of weight change, and independently associated with increased non-cancer mortality in patients with high-risk prostate cancer.

15.
Cereb Cortex ; 32(1): 176-185, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34196669

RESUMO

Low-intensity pulsed ultrasound (LIPUS) has also been reported to improve behavioral functions in Parkinson's disease (PD) animal models; however, the effect of LIPUS stimulation on the neurotrophic factors and neuroinflammation has not yet been addressed. PD rat model was built by injection of 6-hydroxydopamine (6-OHDA) in 2 sites in the right striatum. The levels of neurotrophic factors and lipocalin-2 (LCN2)-induced neuroinflammation were quantified using a western blot. Rotational test and cylinder test were conducted biweekly for 8 weeks. When the 6-OHDA + LIPUS and 6-OHDA groups were compared, the locomotor function of the 6-OHDA + LIPUS rats was significantly improved. After LIPUS stimulation, the tyrosine hydroxylase staining density was significantly increased in the striatum and substantia nigra pars compacta (SNpc) of lesioned rats. Unilateral LIPUS stimulation did not increase brain-derived neurotrophic factor in the striatum and SNpc of lesioned rats. In contrast, unilateral LIPUS stimulation increased glial cell line-derived neurotrophic factor (GDNF) protein 1.98-fold unilaterally in the SNpc. Additionally, LCN2-induced neuroinflammation can be attenuated following LIPUS stimulation. Our data indicated that LIPUS stimulation may be a potential therapeutic tool against PD via enhancement of GDNF level and inhibition of inflammatory responses in the SNpc of the brain.


Assuntos
Doença de Parkinson , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/uso terapêutico , Doenças Neuroinflamatórias , Oxidopamina/toxicidade , Doença de Parkinson/metabolismo , Ratos , Ratos Sprague-Dawley , Substância Negra/metabolismo , Ondas Ultrassônicas
16.
Brain Pathol ; 31(6): e12968, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33960564

RESUMO

Intrauterine growth restriction (IUGR) is a leading cause of perinatal mortality and morbidity, and IUGR survivors are at increased risk of neurodevelopmental deficits. No effective interventions are currently available to improve the structure and function of the IUGR brain before birth. This study investigated the protective effects of low-intensity pulsed ultrasound (LIPUS) on postnatal neurodevelopmental outcomes and brain injury using a rat model of IUGR induced by maternal exposure to dexamethasone (DEX). Pregnant rats were treated with DEX (200 µg/kg, s.c.) and LIPUS daily from gestational day (GD) 14 to 19. Behavioral assessments were performed on the IUGR offspring to examine neurological function. Neuropathology, levels of neurotrophic factors, and CaMKII-Akt-related molecules were assessed in the IUGR brain, and expression of glucose and amino acid transporters and neurotrophic factors were examined in the placenta. Maternal LIPUS treatment increased fetal weight, fetal liver weight, and placental weight following IUGR. LIPUS treatment also increased neuronal number and myelin protein expression in the IUGR brain, and attenuated neurodevelopmental deficits at postnatal day (PND) 18. However, the number of oligodendrocytes or microglia was not affected. These changes were associated with the upregulation of brain-derived neurotrophic factor (BDNF) and placental growth factor (PlGF) protein expression, and enhancement of neuronal CaMKII and Akt activation in the IUGR brain at PND 1. Additionally, LIPUS treatment promoted glucose transporter (GLUT) 1 production and BDNF expression in the placenta, but had no effects on GLUT3 or amino acid transporter expression. Our findings suggest that antenatal LIPUS treatment may reduce IUGR-induced brain injury via enhancing cerebral BDNF/CaMKII/Akt signaling. These data provide new evidence that LIPUS stimulation could be considered for antenatal neuroprotective therapy in IUGR.


Assuntos
Comportamento Animal/fisiologia , Peso Corporal/fisiologia , Encéfalo/metabolismo , Retardo do Crescimento Fetal/terapia , Ondas Ultrassônicas , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dexametasona , Modelos Animais de Doenças , Feminino , Retardo do Crescimento Fetal/induzido quimicamente , Retardo do Crescimento Fetal/metabolismo , Microglia/metabolismo , Atividade Motora/fisiologia , Destreza Motora/fisiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Wistar
17.
Cereb Cortex ; 30(8): 4597-4606, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32248223

RESUMO

The purpose of this study was to investigate the effects and underlying mechanisms of low-intensity pulsed ultrasound (LIPUS) against lipopolysaccharide (LPS)-induced neuroinflammation. BV-2 microglia subjected to LPS administration (1 µg/mL) were treated with LIPUS stimulation. The levels of inflammatory mediators and brain-derived neurotrophic factor (BDNF) were quantified using the western blot. The results showed that LIPUS stimulation promoted the associated cAMP response element-binding protein (CREB)/BDNF expression in the LPS-treated microglia. Meanwhile, LIPUS treatment effectively suppressed the LPS-induced production of tumor necrosis factor-α, interleukin-1ß, interleukin-6, inducible nitric oxide synthase, and cyclooxygenase-2 in the microglial cells, in addition to inhibiting the LPS-induced expressions of toll-like receptor 4 and myeloid differentiation factor 88, as well as the LPS-induced activation of c-Jun N-terminal kinase and nuclear factor kappa B. Furthermore, LIPUS significantly decreased the Bax/Bcl-2 ratio in the microglia following LPS treatment. Our data indicated that LIPUS attenuated the proinflammatory responses as well as the decline in BDNF in LPS-treated microglia. This study provides a better understanding of how LIPUS stimulation regulates anti-inflammatory actions in microglia, providing further evidence suggesting that such stimulation may be regarded as a novel strategy for the treatment of neuroinflammation.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Microglia/metabolismo , Microglia/efeitos da radiação , NF-kappa B/metabolismo , Ondas Ultrassônicas , Animais , Astrócitos , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/efeitos da radiação , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , NF-kappa B/efeitos da radiação , Ratos
18.
Cereb Cortex ; 29(4): 1430-1438, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30873554

RESUMO

The purpose of this study was to investigate the restorative role of low-intensity pulsed ultrasound (LIPUS) against lipopolysaccharide (LPS)-induced neuroinflammation and memory impairments in a simulation of Alzheimer's disease. Mice subjected to LPS administration (250 µg/kg, i.p.) were treated with LIPUS daily for 7 days. The levels of brain-derived neurotrophic factor (BDNF) and inflammatory markers were estimated in brain tissue using western blot. After LIPUS treatment, the neuroprotective effects of LIPUS in mice were assessed by behavioral tests. LPS plus LIPUS-treated mice exhibited a significant increase in the average time spent in the target quadrant compared to the LPS-treated group. Compared with the LPS-treated group, LPS plus LIPUS-treated mice revealed a preference for the novel object. LIPUS treatment significantly attenuated LPS-induced increases in the expression of amyloid-beta (Aß) and amyloid precursor protein (APP) in the hippocampus region of LPS-treated mice. Furthermore, LIPUS significantly reduced the protein levels of TNF-α, IL-1ß, and IL-6 in the mice brain induced by LPS. LIPUS treatment induces neuroprotection by inhibiting the LPS-induced activation of TLR4/NF-κB inflammatory signaling and by enhancing the associated CREB/BDNF expression in LPS-treated mice. Our data showed that LIPUS attenuated LPS-induced memory impairment as well as amyloidogenesis via the suppression of neuroinflammatory activity and BDNF decline.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Encefalite/metabolismo , NF-kappa B/metabolismo , Reconhecimento Psicológico/fisiologia , Receptor 4 Toll-Like/metabolismo , Ondas Ultrassônicas , Animais , Astrócitos/metabolismo , Encefalite/induzido quimicamente , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Med Hypotheses ; 122: 19-21, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30593410

RESUMO

Erectile dysfunction after nerve injury is a common disease after radical prostatectomy. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family, which plays an important role in the survival of existing neurons, the differentiation of new neurons, and synaptic plasticity. It has been demonstrated that low-intensity pulsed ultrasound (LIPUS) accelerates bone healing and axonal regeneration after injury. LIPUS may also be able to stimulate neuronal activity and enhance the levels of neurotrophic factors. Evidence suggests that elevated levels of BDNF in the brain have protective effects against neurodegenerative diseases. Previous studies have shown that the treatment on cavernous nerve injury repair, and protective effect plus neuro-regeneration effect by low-intensity pulsed ultrasound. They shared the similar mechanism including several trophic factors stimulation, Pl3K/akt pathway activation, and anti-fibrosis mechanism. We hypothesized that due to its combined neuroregenerative and protective effects, the non-invasive and easy-to-use method of LIPUS stimulation could have a therapeutic effect on erectile dysfunction stemming from cavernous nerve injury.


Assuntos
Disfunção Erétil/terapia , Inflamação , Prostatectomia/efeitos adversos , Ondas Ultrassônicas , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Masculino , Modelos Teóricos , Regeneração Nervosa , Doenças Neurodegenerativas/metabolismo , Pênis/lesões , Pênis/inervação , Ratos , Ratos Sprague-Dawley
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 6056-6059, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30441717

RESUMO

The purpose of this study was to investigate the protective role of low-intensity pulsed ultrasound (LIPUS) against lipopolysaccharide (LPS)-induced neuroinflammation and memory impairments in a mouse model. A 1.0 MHz focused ultrasound transducer was exploited to sonicate the brain noninvasively with 50 ms burst lengths at a 5% duty cycle, a repetition frequency of 1 Hz. Mice subjected to LPS administration (250 µg/kg, i.p.) were treated with LIPUS daily for 7 days. The levels of inflammatory markers were estimated in brain tissue using western blot. After LIPUS treatment, the neuroprotective effects of LIPUS in mice were assessed by behavioral analysis using the Morris water maze. The average escape latencies were significantly shortened in LPS plus LIPUS-treated mice from the sixth day of the acquisition phase. Furthermore, LIPUS significantly reduced the protein levels of TNF-α, IL-1ß, and IL-6 in the mice brain induced by LPS. LIPUS treatment shows neuroprotection by inhibiting LPS-induced activation of TLR4 inflammatory signaling. Our data showed that LIPUS attenuated LPS-induced memory impairment via suppression of neuroinflammatory activity.


Assuntos
Ondas Ultrassônicas , Animais , Modelos Animais de Doenças , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...